Multi-elitist immune clonal quantum clustering algorithm
نویسندگان
چکیده
The quantum clustering (QC) algorithm suffers from the issues of getting stuck in local extremes and computational bottleneck when handling large-size image segmentation. By embedding a potential evolution formula into affinity function calculation of multi-elitist immune clonal optimization, and updating the cluster center based on the distance matrix, the multi-elitist immune clonal quantum clustering algorithm (ME-ICQC) is proposed in this paper. In the proposed framework, elitist population is composed of the individuals with high affinity, which is considered to play dominant roles in the evolutionary process. It can help to find the global optimal solution or near-optimal solution for most tested tasks. The diversity of population can be well maintained by general subgroup evolution of ME-ICQC. These different functions are implemented by the dissimilar mutation strategies or crossover operators. The bi-group exchanges the information of excellence antibodies using the hypercube coevolution operation. Compared with existing algorithms, the ME-ICQC achieves an improved clustering accuracy with more stable convergence, but it is not significantly better than other optimization techniques combined with QC. Also, the experimental results also show that our algorithm performs well on multi-class, parameters-sensitive and large-size datasets. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملData Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملA Quantum Chaos Clonal Multiobjective Evolutionary Method Reasearch
A quantum chaos cloning multi-objective evolutionary algorithm was proposed herein based on chaos search ergodicity, quantum computing efficiency and clonal selection theory of antibodies in artificial immune system. The qubits encoded initial population is used in the new algorithm, Chaos quantum rotation gates are introduced to update individuals, crowding distance is used to keep solution po...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملStudies on Immune Clonal Selection Algorithm and Application of Bioinformatics
Immune algorithms (IAs) are microscopic view of evolutionary algorithms (EAs) and applied in combinatorial optimization problems. This paper addresses to a clonal selection algorithm (CSA) that is one of the most representative IA and was applied into the protein structure prediction (PSP) on AB off-lattice model, in which the memory B cells of the CSA was innovated by employing different strat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 101 شماره
صفحات -
تاریخ انتشار 2013